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I.   INTRODUCTION 

The calculus founded by Newton and Leibniz is a very important scientific achievement in the history of mathematics. 

Fractional calculus was first proposed by the famous mathematician Hospital in 1695. A question is about what is 
𝑑

1
2⁄ 𝑥

𝑑𝑥
1

2⁄
 ? 

After 124 years, Lacroix gave the right answer to this question for the first time that   
𝑑

1
2⁄ 𝑥

𝑑𝑥
1

2⁄
=

2

√𝜋
𝑥

1
2⁄  . However, for a long 

time, due to the lack of practical application, fractional calculus has not been widely used. With the development of science 

and technology, especially since the 20th century, the theory and application of fractional calculus began to be widely 

concerned. Fractional calculus has become a powerful tool to study fractional differential equations and fractional functions, 

and has been widely used in the research of physics, electrical engineering, viscoelasticity, control theory, biology, 

economics, and so on [1-12]. 

However, the definition of fractional derivative is not unique. The commonly used definitions include Riemann-Liouville 

(R-L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, and Jumarie’s 

modified R-L fractional derivative [13-16]. Because Jumarie type of R-L fractional derivative helps to avoid non-zero 

fractional derivative of constant function, it is easier to use this definition to connect fractional calculus with traditional 

calculus. 

In this paper, based on Jumarie type of R-L fractional calculus, we solve the following two 𝛼-fractional integrals: 

                                                                               ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼)] ,                                                     (1) 

and 

                                                                               ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼 [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]] ,                                                     (2) 

where 0 < 𝛼 ≤ 1. Integration by parts for fractional calculus, and a new multiplication of fractional analytic functions play 

important roles in this paper. In fact, our results are generalizations of ordinary calculus results. 
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II.   PRELIMINARIES 

At first, we introduce the fractional calculus used in this paper and its properties. 

Definition 2.1 ([17]): Let 0 < 𝛼 ≤ 1, and 𝑥0 be a real number. The Jumarie type of Riemann-Liouville (R-L) 𝛼-fractional 

derivative is defined by 

                                                                          ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 .                                               (3) 

And the Jumarie type of R-L 𝛼-fractional integral is defined by 

                                                                             ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                       (4) 

where Γ( ) is the gamma function.  

Proposition 2.2 ([18]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                            (5) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                        (6) 

Next, the definition of fractional analytic function is introduced. 

Definition 2.3 ([19]): If 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([20]): Let 0 < 𝛼 ≤ 1 , and 𝑥0  be a real number. If 𝑓𝛼(𝑥𝛼)  and  𝑔𝛼(𝑥𝛼)  are two 𝛼 -fractional analytic 

functions defined on an interval containing  𝑥0 , 

                                                                                   𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                     (7) 

                                                                                  𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  .                                                    (8) 

Then we define 

                                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                                   = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                                   = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                           (9) 

Equivalently, 

                                                       𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                 = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                              (10) 

Definition 2.5 ([21]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions defined on an interval 

containing 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0

∞
𝑛=0  ,                            (11) 
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                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼 = ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                              (12) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑛

𝑛!
(𝑔𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 ,                                           (13) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑛

𝑛!
(𝑓𝛼(𝑥𝛼))

⨂𝛼 𝑛∞
𝑛=0 .                                            (14) 

Definition 2.6 ([22]): Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) be two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥𝛼))
⨂𝛼 𝑛

=

𝑓𝛼(𝑥𝛼)⨂𝛼 ⋯ ⨂𝛼 𝑓𝛼(𝑥𝛼) is called the 𝑛th power of 𝑓𝛼(𝑥𝛼). On the other hand, if 𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) = 1, then 𝑔𝛼(𝑥𝛼) is 

called the ⨂𝛼  reciprocal of 𝑓𝛼(𝑥𝛼), and is denoted by (𝑓𝛼(𝑥𝛼))
⨂𝛼 −1

. 

Definition 2.7 ([23]): If 0 < α ≤ 1, and 𝑥 is a real variable. The 𝛼-fractional exponential function is defined by 

                                                                𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                             (15) 

And the 𝛼-fractional logarithmic function 𝐿𝑛𝛼(𝑥𝛼) is the inverse function of 𝐸𝛼(𝑥𝛼). 

Theorem 2.8 (integration by parts for fractional calculus) ([24]): Suppose that 0 < 𝛼 ≤ 1, 𝑎, 𝑏 are real numbers, and 

𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions, then 

            ( 𝐼𝑎 𝑏
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = [ 𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)]
𝑥=𝑎

𝑥=𝑏
− ( 𝐼𝑎 𝑏

𝛼) [𝑔𝛼(𝑥𝛼)⨂𝛼 ( 𝐷𝑎 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]].       (16) 

III.   MAIN RESULTS 

In this section, we solve two fractional integrals by using integration by parts for fractional calculus.  

Example 3.1: Let  0 < 𝛼 ≤ 1. Find 

                                                                              ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼)] .                                          

Solution   Using integration by parts for fractional calculus yields 

              ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼)]  

         = ( 𝐼0 𝑥
𝛼) [𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼)⨂𝛼 ( 𝐷0 𝑥

𝛼) [
1

2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]]  

        = [
1

2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

⨂𝛼 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼)]
0

𝑥

− ( 𝐼0 𝑥
𝛼) [

1

2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

⨂𝛼 [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 −1

]                 

        =
1

2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

⨂𝛼 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) −
1

2
( 𝐼0 𝑥

𝛼) [1 − [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 −1

]  

        =
1

2
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

⨂𝛼 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) +
1

2
𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) −

1

2
∙

1

Γ(𝛼+1)
𝑥𝛼.                                                              (17) 

Example 3.2: If 0 < 𝛼 ≤ 1. Find 

                                                                       ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼 [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]]. 
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Solution  By integration by parts for fractional calculus,       

     ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼 [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]] 

 = ( 𝐼0 𝑥
𝛼) [𝐿𝑛𝛼 [1 + (

1

Γ(𝛼 + 1)
𝑥𝛼)

⨂𝛼 2

] ⨂𝛼 ( 𝐷0 𝑥
𝛼) [

1

Γ(𝛼 + 1)
𝑥𝛼]] 

= [
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝐿𝑛𝛼 [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]]

0

𝑥

− ( 𝐼0 𝑥
𝛼) [2 ∙ (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

⨂𝛼 [1 + (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 −1

]  

=
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝐿𝑛𝛼 [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

] − 2 ∙ ( 𝐼0 𝑥
𝛼) [1 − [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

]

⨂𝛼 −1

]   

=
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝐿𝑛𝛼 [1 + (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

] + 2 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛𝛼(𝑥𝛼) − 2 ∙
1

Γ(𝛼+1)
𝑥𝛼 .                                                          (18) 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional calculus, we evaluate two fractional integrals by using integration 

by parts for fractional calculus. A new multiplication of fractional analytic functions plays an important role in this paper. 

In fact, our results are generalizations of the results in classical calculus. In the future, we will continue to study the problems 

in engineering mathematics and fractional differential equations. 
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